2 5 Ju n 20 09 On the Siegel - Weil Theorem for Loop Groups ( II ) Howard Garland

نویسنده

  • Yongchang Zhu
چکیده

This is the second of our two papers on the Siegel-Weil theorem for loop groups. In the first paper [3] we proved the Siegel-Weil theorem for (finite dimensional) snt-modules ([3], Theorem 8.1). In the present paper we use this result to obtain the Siegel-Weil theorem for loop groups, Theorem 7.5, below. In addition to the corresponding result for snt-modules, our proof depends on a convergence condition for certain Eisenstein series on loop groups (Theorem 5.3, below). We note that this convergence criterion is used for the convergence criterion for Eisenstein series associated with snt-modules (Theorem 6.6, below). The uniform convergence obtained in Theorem 6.6 is crucial for applying the abstract lemma in Weil [8] (see [8], Proposition 2, page 7). The Siegel-Weil theorem for snt-modules does not immediately give the result for loop groups. The failure to do so is measured by the terms on the right hand side of (7.8). However, in §8, we show that in fact, these ”error terms” vanish! We now describe briefly our main result. Let F be a number field, F 2n be the standard symplectic space over F , and let (V, (, )) be a finite dimensional F -space with an anisotropic non-degenerate symmetric bilinear form (, ) with corresponding orthogonal group G. The space F 2n⊗V is naturally a symplectic space with isometry group Sp2N (where 2N = 2ndimV ). The groups Sp2n and G are commuting subgroups in Sp2N . The Weil representation can be generalized to loop symplectic groups [9]. Let S((t−1F [t−1]2n ⊗ V )A)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 8 On the Siegel - Weil Theorem for Loop Groups ( I )

The notion of an snt-module and our extension (1.14) of the Siegel-Weil Theorem (also see Theorem 8.1, §8) grew out of our work on the SiegelWeil Theorem for arithmetic quotients of loop groups, which we prove in Part II of this paper ([3]). In fact (1.14) is a vital step in our proof of the Siegel-Weil theorem in the loop case, and as far as we know, it also seems to be a new result for automo...

متن کامل

Supplementary Lecture Notes on Elliptic Curves

1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...

متن کامل

A rigid analytic Gross-Zagier formula and arithmetic applications

1 Gross’ formula for special values of L-series . . . . . . . . . . . . . . . 4 2 Bad reduction of Shimura curves . . . . . . . . . . . . . . . . . . . 5 3 Heegner points and connected components . . . . . . . . . . . . . . . 7 4 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 A rigid analytic Gross-Zagier formula . . . . . . . . . . . . . . . . 11 6 Kolyvagin cohomolog...

متن کامل

1 5 Ju n 20 09 COMPLETIONS OF HIGHER EQUIVARIANT K - THEORY

For a linear algebraic group G acting on a smooth variety X over an algebraically closed field k of characteristic zero, we prove a version of nonabelian localization theorem for the rational higher equivariant K-theory of X . This is then used to establish a Riemann-Roch theorem for the completion of the rational higher equivariant K-theory at a maximal ideal of the representation ring of G.

متن کامل

. G T ] 1 3 N ov 2 00 8 Asymptotics of Weil - Petersson geodesics I : ending laminations , recurrence , and flows

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009